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Abstract

In this paper, we study the countable compactness and pseudocompactness of the hypersX

of a Hausdorff spaceX consisting of all nonempty closed subsets ofX equipped with the Vietoris
topology. Some open questions posed by Ginsburg in 1975 are considered. In particular, w
partial solutions to one of them.
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1. Introduction

All topological spaces are assumed to be Hausdorff. Given a spaceX, 2X denotes the
collection of all nonempty closed subsets ofX. One of the most important and we
studied topologies on 2X is the Vietoris topologyτV , which is also known as the finit
topology. To describe this topology, we need some notation. For a subsetE of X, let
E− = {A ∈ 2X: A ∩ E �= ∅}, andE+ = {A ∈ 2X: A ⊆ E}. Then τV has as a subbas
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all subsets of 2X of the formsU− andV +, whereU andV are open subsets ofX. For any
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finite family V of subsets ofX, let

〈V〉 =
{
F ∈ 2X: F ⊆

⋃
V, F ∩ V �= ∅ for anyV ∈ V

}
.

It is a well-known fact that the collection of all subsets of 2X of the form〈V〉, whereV is
a finite family of open subsets ofX, is a base forτV . From now on, the hyperspace 2X of
X will always carry the topologyτV except it is stated explicitely.

One of the fundamental problems in the theory of hyperspaces is to decide
topological property ofX can be transfered to 2X and vice versa. For instance, t
famous Vietoris–Michael theorem [11, Theorem 4.2] asserts that a spaceX is compact
if and only if 2X is compact (see [2,9–11] for more results of this type). So, it is q
natural to ask the following question:What can we say about the hyperspace2X of a
countably compact or pseudocompact spaceX? Are there any analogs to the Vietoris
Michael theorem for countable compactness or pseudocompactness? Recall that a spac
X is said to becountably compactif every infinite subset has an accumulation point; a
X is said to bepseudocompactif every continuous real-valued function on it is bound
When it is Tychonoff, a space is pseudocompact if and only if every sequence of non
open subsets has an accumulation point. It seems that unlike those covering properti
considered in [10], the behavior of countable compactness-like properties with resp
the Vietoris topology is not easy to handle. In 1975, Ginsburg [6] considered the
question and discovered that the countable compactness (pseudocompactness) oX has
some nice connections to the countable compactness (pseudocompactness) of powX.
Note that neither countable compactness nor pseudocompactness is (finitely) multiplicative
in the realm of Tychonoff spaces as Novák [12] and Terasaka [14] showed indepen
What Ginsburg proved are in fact the following:

(i) If all powers of a spaceX are countably compact, then its hyperspace2X is countably
compact;

(ii) If the hyperspace2X of a spaceX is countably compact, then all finite powers ofX

are countably compact.

A result similar to (ii) also holds for pseudocompact Tychonoff spaces. In addition to
mentioned results, Ginsburg also showed that there is a Tychonoff spaceX all of whose
finite powers are countably compact but whose hyperspace 2X is not pseudocompac
Indeed,X is one of spaces constructed by Frolik in [5] with the following propert
All finite powers of X are countably compact, butXω is not pseudocompact. In th
paper, we shall provide a Tychonoff space (see Example 2.4) all of whose finite p
are countably compact and whose countable infinite power is pseudocompact, but
countable infinite power is not countably compact. The main purpose of this pape
tackle the following question.

Question 1.1 [6, Remark 3.2].Is there any relation between the pseudocompact
(countable compactness) of Xω and that of2X?
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In attempting to attack Question 1.1, we obtain some partial solutions to it. More
ion 2,
more,
bly
d
ion

[15,
amples
ut
spaces.

ed in

ce

t.
precisely, we shall give a counterexample to this question in one direction in Sect
and then show some positive results in the other direction in Section 3. Further
we also show that underMA, 2c is the best possible cardinal for powers of a counta
compact spaceX to guarantee the countable compactness of 2X. Several remarks relate
to hyperspaces of countably compact (pseudocompact) spaces are given in the last sect
of the paper.

2. Some examples

In this section, we shall extend the constructions of [6, Example 3.1] and
Example 4.13] to a more general approach which not only can be used to produce ex
of countably compact spaces whose hyperspaces withτV are not countably compact, b
also can be applied to prove positive results for some special classes of topological

Given any family{Xi : i ∈ A} of countably compact spaces, let
⊕{Xi : i ∈ A} be the

disjoint union ofX′
i s. We define a countably compact spaceX as follows:

(i) If |A| < ω, just letX = ⊕{Xi : i ∈ A};
(ii) If |A| � ω, we pick up an arbitrary point∞ /∈ ⊕{Xi : i ∈ A}, and then endow

X = ⊕{Xi : i ∈ A} ∪ {∞} with a topology such that eachXi with its original
topology is clopen inX, and such that every neighbourhood of∞ contains all but
finitely many of theXi . In this case, the spaceX is usually called theone-point
countably compactificationof

⊕{Xi : i ∈ A}. It can be checked easily thatX is regular
(Tychonoff) if and only if allX′

i s are regular (Tychonoff).

Theorem 2.1. Let {Xi : i ∈ A} be a family of countably compact spaces, and letX be the
space defined above. If2X is countably compact, then the product space

∏{Xi : i ∈ A} is
countably compact.

To prove Theorem 2.1, we need the following general lemma which shall be us
Section 3 as well.

Lemma 2.2. Let X be a space, and letα > 0 be a cardinal. If there are twoα-sequences
(Uξ : ξ < α) and(Vξ : ξ < α) of nonempty open sets inX; and a closed discrete sequen
(xn: n < ω) of points in theαth powerXα of X, wherexn = 〈xn(ξ)〉ξ<α for eachn < ω,
such that

(i) (Uξ : ξ < α) is pairwise disjoint,
(ii) V ξ ⊆ Uξ for all ξ < α, and
(iii) xn(ξ) ∈ Vξ for all ξ < α and alln < ω, then2X is not countably compact.

Proof. For eachn < ω, let xn denote the closure of{xn(ξ): ξ < α} in X. We shall show
that(xn: n < ω) has no accumulation points in 2X, and thus 2X is not countably compac
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Suppose that it has an accumulation pointF ∈ 2X . We first establish that|F ∩ Uξ | = 1 for
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everyξ < α. If this is not true, then there are two possible cases for us to consider.
Case1. There exists someξ ′ < α such thatF ∩ Uξ ′ = ∅. In this case,F ∈ (X � V ξ ′)+.

Thus,xn ∈ (X � V ξ ′)+ for infinitely manyn < ω. This is impossible, asxn(ξ
′) ∈ Vξ ′ for

all n < ω.
Case2. There exists someξ ′′ < α such that|F ∩Uξ ′′ | > 1. In this case,F must meet two

disjoint open setsG0,G1 ⊆ Uξ ′′ . It follows that(G0)
− ∩ (G1)

− is aτV -open neighborhoo
of F , and thusxn ∈ (G0)

− ∩ (G1)
− for infinitely many n < ω. This implies that for

infinitely manyn < ω, we have both{xn(ξ): ξ < α}∩G0 �= ∅ and{xn(ξ): ξ < α}∩G1 �= ∅
simultaneously. Again, it is impossible, since every termxn has exactly one coordina
contained inUξ ′′ .

Now, let F ∩ Uξ = {x(ξ)} for eachξ < α. Then, we define a pointx ∈ Xα such that
x = 〈x(ξ)〉ξ<α . Next, we take an arbitrary basic open neighborhood

O =
k∏

i=0

Oξi ×
∏{

Xξ : ξ ∈ α � {ξ0, ξ1, . . . , ξk}
}

of the pointx in Xα , wherek < min{α,ω}, eachOξi (i � k) is an open neighborhood o
x(ξi) in X andXξ = X for all ξ ∈ α � {ξ0, ξ1, . . . , ξk}. Define

W =
k⋂

i=0

(Uξi ∩ Oξi )
−.

ThenW is aτV -open neighborhoodofF . SinceF is an accumulation point of(xn: n < ω),
for anyn < ω, there is ajn � n such thatxjn ∈W . Consequently, we have

{
xjn(ξ): ξ < α

} ∩ (Uξi ∩ Oξi ) �= ∅
for all i � k. It follows that xjn(ξi) ∈ Oξi for all i � k. Therefore,xjn ∈ O , and thusx
is an accumulation point of(xn: n < ω) in Xα . However, this is a contradiction, sinc
(xn: n < ω) is a closed discrete sequence inXα . �
Proof of Theorem 2.1. Suppose that

∏{Xi : i ∈ A} is not countably compact. Then the
exists a closed discrete sequence(xn: n < ω) in X|A|, wherexn = 〈xn(i)〉i∈A for each
n < ω, such thatxn(i) ∈ Xi for all n < ω and alli ∈ A. Note that eachXi is clopen inX.
If we takeUi = Vi = Xi for all i ∈ A, and apply Lemma 2.2, then we can conclude thaX

is not countably compact.�.

Let ω∗ = βω � ω be the set of free ultrafilters onω with the relative topology ofβω,
andD ∈ ω∗. We say a pointx ∈ X a D-limit of a sequence(An: n < ω) of subsets of a
spaceX if {n < ω: An ∩ U �= ∅} ∈ D for each open neighborhoodU of x. A spaceX

is said to beD-compact(D-pseudocompact) [1,6] provided that every sequence of poin
(nonempty open subsets) inX has aD-limit. EveryD-compact (D-pseudocompact) spac
is countably compact (pseudocompact). In addition, two ultrafiltersx, y ∈ ω∗ are called
equivalentif there exists a automorphismh :βω → βω such thath(x) = y. Decompose
ω∗ into equivalence classes calledtypes. For eachx ∈ ω∗, let T (x) denote the type ofx.



J. Cao et al. / Topology and its Applications 144 (2004) 133–145 137

It is well known that for anyx ∈ ω∗, T (x) is a dense, but not countably compact subspace
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of ω∗. Furthermore, ifx ∈ ω∗ is a non-P point, thenT (x) is D-pseudocompact for som
D ∈ ω∗ [7, Theorem 5.5].

The next lemma is originated to [5], the current form is taken from [13].

Lemma 2.3 [5,13].For eachx ∈ ω∗, letFx = {D ∈ ω∗: x is theD-limit of some one-to-on
discrete sequence ofβω}. Then|Fx | � c.

In 1967, Frolik [5] constructed a Tychonoff spaceX whose finite powers are countab
compact, but countable infinite power is not pseudocompact (thus, not countably com
Ginsburg [6] further showed that 2X is not pseudocompact. In our next example, we giv
Tychonoff space having the following properties: all finite powers are countably com
the countable infinite power is pseudocompact but not countably compact.

Example 2.4. There exists a Tychonoff spaceX such that all finite powers ofX are
countably compact andXω is pseudocompact, butXω is not countably compact. Let Z

be any denseD�-pseudocompact subspace ofω∗ for someD� ∈ ω∗ such that|Z| = c, and
such thatZ is not countably compact (for example, takeZ as the type of any non-P point
in ω∗). By Lemma 2.3, we have|⋃{Fx: x ∈ Z}| � c. Pick someD0 ∈ ω∗

�
⋃{Fx : x ∈ Z}.

Let Y0 = {x ∈ ω∗: x is theD0-limit of some discrete sequence inZ}. ThenZ ∩ Y0 = ∅.
Inductively, one can construct anω1-sequence(Yα : α < ω1) of pairwise disjoint subsets o
ω∗ and anω1-sequence(Dα : α < ω1) in ω∗ with distinct types such that for everyα < ω1,
every discrete sequence of points inZ ∪ ⋃{Yβ : β < α} has aDα-limit in Yα .

Select a sequence(An: n < ω) of subsets ofω1 such that the intersection of any fini
subfamily is unbounded, and

⋂
n<ω An = ∅. For eachn < ω, let Xn = Z ∪⋃{Yα : α ∈ An}

be the subspace ofβω. Similarly to Theorem D in [5], any finite subproduct of
∏

n<ω Xn

is countably compact. The diagonal of
∏

n<ω Xn is homeomorphic toZ which is not
countably compact, it follows that

∏
n<ω Xn is not countably compact. Since

∏
n<ω Z

is a denseD�-pseudocompact subspace of
∏

n<ω Xn, then
∏

n<ω Xn itself is alsoD�-
pseudocompact.

Let X = ⊕{Xn: n < ω} ∪ {∞} be the one point countably compactification of t
disjoint union

⊕{Xn: n < ω}. It is easily checked that any finite power ofX is countably
compact, but the countable infinite powerXω is not countably compact. To show thatXω

is pseudocompact, let(Gn: n < ω) be an arbitrary sequence of basic open sets inXω.
We shall show that(Gn: n < ω) has a cluster point inXω. Without loss of generality, we
may assume thatGn = ∏kn

i=1 Uni × ∏
i /∈{1,...,kn} X for eachn < ω, and(kn: n < ω) is an

increasing sequence ofN. Inductively, after taking refinements, one can define a sequ
(Bj : j < ω) in [ω]ω and a sequence(ϕj : j < ω) of mappings such that for eachj < ω,

(i) ϕj :Bj → ω;
(ii) |Bj+1 � Bj | < ω; and either
(iii) ϕj is an injective mapping such thatUij ⊆ Xϕj (i) for all i ∈ Bj ; or
(iv) ϕj is an constant mapping such thatUij ⊆ Xϕj (i) for all i ∈ Bj .
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By using the diagonal argument, one can choose someB = {bn: n < ω} ∈ [ω]ω such that
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|B � Bj | < ω for all j < ω. Note that eachXn is D�-pseudocompact. Define a poi
x = 〈xj 〉j<ω ∈ Xω as follows: if ϕj is an constant mapping, letxj be theD�-limit of
(Ubnj : n < ω) in Xϕj (i), wherei ∈ Bj ; and letxj = ∞ if ϕj is an injective mapping. Fo
any basic open neighborhoodV = ∏m

i=1 Vi ×∏
i>m X of x in Xω, choose somen < ω such

thatkn > m. Since{n: Ubni ∩ Vi �= ∅} ∈ D� for eachi � m, then{bn ∈ B: Gbn ∩ V �= ∅}
is infinite. This shows thatx is a cluster point of(Gn: n < ω) in Xω. Therefore,Xω is
pseudocompact.

Remark 2.5. The referee points out that the spaceX in Example 2.4 is in factD�-
pseudocompact, and thus any powerXα of X is D�-pseudocompact. To see this,
L = ⊕{Zn: n ∈ ω} be the pairwise disjoint union ofZn’s, whereZn = Z for everyn ∈ ω

and putH = L ∪ {∞}. EquipH with the induced topology fromX. ThenH is a dense
D�-pseudocompact subspace ofX. This implies thatX itself isD�-pseudocompact.

In the next example, we apply a known space in [15] and Theorem 2.1 to give a ne
answer to Question 1.1 for countable compactness in one direction, even whenXω1 is
countably compact.

Example 2.6. There exists a countably compact Tychonoff spaceX such thatXt is
countably compact but2X is not countably compact. For eachD ∈ ω∗, let XD = βω �

{D} be endowed with the relative topology ofβω. Let X be the one-point countab
compactification of the disjoint union

⊕{XD: D ∈ ω∗}. It is shown in [15, Example
4.13] thatX is totally countably compact (A spaceX is totally countably compactif every
sequence of points inX has a subsequence which is contained in a compact subsetX),
but notD-compact for anyD ∈ ω∗. By [15, Theorem 3.3],Xt is countably compact (Reca
thatt is the minimal cardinality of towers andt � ω1). LetZ = ∏{XD: D ∈ ω∗}. As shown
in [15, Example 3.14],Z is not countably compact. By Theorem 2.1, we conclude thaX

is not countably compact.

The following lemma is well known.

Lemma 2.7 [7]. A spaceX is D-compact for someD ∈ ω∗ if and only ifX2c

is countably
compact.

It is shown in [6] that for any spaceX, the hyperspace 2X is D-compact (D-
pseudocompact) if and only ifX isD-compact (D-pseudocompact). It follows immediate
from Lemma 2.7 that 2X is countably compact provided thatX2c

is countably compact
Now, a natural question which arises from this fact is:

Question 2.8. Is 2c the best possible cardinal for the power of a countably compact s
X to guarantee the countable compactness of2X?

The answer to Question 2.8 is “yes” by Example 2.6, if we assume the first two
of GCH (i.e., c = 2ω = ω1, and 2ω1 = ω2). To get a better consistency answer, we n
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an extra concept. Recall that an ultrafilterD ∈ ω∗ is said to be aselective ultrafilter, or
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a Ramsey ultrafilter[3] if whenever(An: n < ω) is a countable decomposition ofω and
An /∈ D for all n < ω, there isA ∈D with |A ∩ An| � 1 for all n < ω.

Example 2.9. AssumingMA, there exists a Tychonoff spaceX such that for everyα < 2c,
Xα is countably compact but2X is not countably compact. AssumingMA, Saks [13,
Theorem 2.5] showed that there exists a 2c-sequence(Xς : ς < 2c) of subspaces o
βω such that for every properI ⊂ 2c, there is some selective ultrafilterD ∈ ω∗ (D
depends onI ) such that the partial product

∏{Xς : ς ∈ I } is D-compact, but the ful
product

∏{Xς : ς < 2c} is not countably compact. LetX be the one-point countab
compactification of

⊕{Xς : ς < 2c}.
Since

∏{Xς : ς < 2c} is not countably compact, by Theorem 2.1, 2X is not countably
compact. Hence, we are left to show that for any cardinalα < 2c, theαth powerXα of
X is countably compact. To this end, fix anα < 2c, and pick up an arbitrary sequen
(xn: n < ω) in Xα , wherexn = 〈xn(ξ)〉ξ<α for all n < ω. We shall deduce that(xn: n < ω)

has an accumulation point inXα . Note that a sequence in a product space has aD-limit
for someD ∈ ω∗ if and only if its projection on each factor has aD-limit (with respect to
the sameD). Thus, it suffices to prove that there is someD ∈ ω∗ such that for anyξ < α,
(xn(ξ): n < ω) has aD-limit in X. To do so, we first choose a proper subsetI ⊂ 2c such
that

{
xn(ξ): ξ < α, n < ω

} ⊆
⋃

{Xζ : ζ ∈ I } ∪ {∞}.
Let D ∈ ω∗ be a selective ultrafilter such that

∏{Xζ : ζ ∈ I } is D-compact. For a fixed
ξ < α, defineAξ = {n < ω: xn(ξ) �= ∞}. SinceD is an ultrafilter, we have

(i) ω � Aξ ∈ D, or
(ii) Aξ ∈D.

If (i) holds, then∞ is theD-limit of (xn(ξ): n < ω) in X. If (ii) holds, since we assum
that allXς ’s are pairwise disjoint in

⊕{Xς : ς < 2c}, we first define a countable subset

I (ξ) = {
ς ∈ I :

{
xn(ξ): n ∈ Aξ

} ∩ Xς �= ∅}

of I and then decomposeω into a countable disjoint union as

ω = (ω � Aξ) ∪
⋃{{

n ∈ Aξ : xn(ξ) ∈ Xς

}
: ς ∈ I (ξ)

}
.

Now, we have the following two subcases:

(ii a) There exists someς ∈ I (ξ) with {n ∈ Aξ : xn(ξ) ∈ Xς } ∈ D. In this case,Xς is D-
compact, thus(xn(ξ): n < ω) has aD-limit in Xς ⊂ X.

(ii b) For everyς ∈ I (ξ), {n ∈ Aξ : xn(ξ) ∈ Xς } /∈ D. In this case,|I (ξ)| = ω. Since
D is a selective ultrafilter, there exists someBξ ∈ D and an injective mappin
f :Bξ → I (ξ) with xn(ξ) ∈ Xf (n) for all n ∈ Bξ . It is easy to see that∞ is the
D-limit of (xn(ξ): n < ω) in X.
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It follows that in any case,(xn: n < ω) has aD-limit in Xα , which implies that it has
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an accumulation point inXα . Therefore,Xα is countably compact.

Remark 2.10. It remains an open question whether the answer to Question 2
affirmative inZFC. Moreover, it is not clear to the authors that whether the hypers
of the space given in Example 2.4 or Example 2.6 is pseudocompact or not. In f
is still an unsolved problem that whether 2X is pseudocompact for a Tychonoff spaceX

whenever all powers ofX are pseudocompact.

3. Positive results for homogeneous spaces

In this section, we shall provide some positive answers to Question 1.1 in
special cases. Given a spaceX, let idX be the identity mapping onX. The family of all
homeomorphisms ofX onto itself will be denoted by Aut(X). Recall thatX is said to be
homogeneousif for any two distinct pointsx, y ∈ X there exists anf ∈ Aut(X) such that
f (x) = y.

Theorem 3.1. Let X be a regular homogeneous space. If2X is countably compact, the
Xω is countably compact.

Proof. If X is finite, we have nothing to prove. So, we assume thatX is infinite. Then,
by the homogeneity ofX and the countable compactness of 2X , X must have no isolate
points. By [6, Corollary 2.3],X is countably compact.

To prove thatXω is countably compact, let(xn: n < ω) be an arbitrary sequenc
in Xω, where xn = 〈xn(k)〉k<ω for each n < ω. We shall deduce that(xn: n < ω)

has an accumulation point inXω. Let z(0) be an accumulation point of the sequen
(xn(0): n < ω). Then choose two open subsetsV0,U0 ⊆ X such thatz(0) ∈ V0 ⊆ V 0 ⊆ U0
andU0 �= X. Next, we define

A0 = {
n < ω: f0

(
xn(0)

) ∈ V0
}
,

wheref0 = idX (for the sake of unification). Letz(1) be an accumulation point of th
sequence(xn(1): n ∈ A0). Select anf1 ∈ Aut(X) and two open subsetsV1,U1 ⊆ X such
thatf1(z(1)) ∈ V1 ⊆ V 1 ⊆ U1, U0 ∩ U1 = ∅ andU0 ∪ U1 �= X. (In casez(1) /∈ U0, then
just takef1 = idX .) Then we define

A1 = {
n ∈ A0: f1

(
xn(1)

) ∈ V1
}
.

SinceX has no isolated points, we can continue this process inductively, and thus
infinite sequences(z(j): j < ω), (Uj : j < ω), (Vj : j < ω), (Aj : j < ω) and(fj : j < ω)

such that

(i) fj ∈ Aut(X) for all j < ω,
(ii) (Uj : j < ω) is a sequence of pairwise disjoint nonempty open sets inX with⋃

j�n Uj �= X for all n < ω,

(iii) (Vj : j < ω) is a sequence of nonempty open sets inX with V j ⊆ Uj for all j < ω,
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(iv) for eachj < ω, Aj is an infinite subset ofω andAj+1 ⊆ Aj ,

itable
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(v) Aj+1 = {n ∈ Aj : fj+1(xn(j + 1)) ∈ Vj+1} for all j < ω,
(vi) for eachj < ω, z(j) is an accumulation point of(xn(j): n ∈ Aj), and
(vii) fj (z(j)) ∈ Uj for all j < ω.

Now, one can pick an infinite setA = {aj : j < ω} ⊆ ω such thataj ∈ Aj for all
j < ω. Then, by (iv), |A � Aj | < ω for all j < ω. For eachn < ω and j < ω, let
yan(j) = fj (xan(j)) andyan = 〈yan(j)〉j<ω.

Next, we shall show that the sequence(yan : n < ω) has an accumulation point inXω

by using Lemma 2.2. To this end, we choose an infinite sequence(tan : n < ω) in Xω such
that for eachj < ω, |{n ∈ ω: tan(j) �= yan(j)}| < ω, andtan(j) ∈ Vj for all n, j < ω. This
is possible, since for eachj < ω, Vj is infinite, andyan(j) ∈ Vj for all but finitely many
n < ω. It is easy to see that(tan : n < ω) has an accumulation point inXω if and only
if (yan : n < ω) does. Since 2X is countably compact, the sequence(tan : n < ω) has an
accumulation point inXω, which is also an accumulation point of(yan: n < ω).

Let y = 〈y(j)〉j<ω be any accumulation point of(yan: n < ω) in Xω. It can be easily
checked thatx = 〈f −1

j (y(j))〉j<ω is an accumulation point of(xan : n < ω) in Xω, and
thus is also an accumulation point of(xn: n < ω) in Xω. Therefore,Xω is countably
compact. �

By replacing the closed discrete sequence of points in Lemma 2.2 with a su
sequence of open sets, we obtain the following lemma.

Lemma 3.2. LetX be a space without isolated points. For allj,n < ω, let Vj , Uj andOnj

be nonempty open subsets ofX satisfying

(i) (Uj : j < ω) is pairwise disjoint,
(ii) V j ⊆ Uj for all j < ω, and
(iii) for eachj < ω, Onj ⊆ Vj for all but finitely manyn < ω.

Let (kn: n < ω) be a strictly increasing sequence inω. For eachn < ω, define

On =
kn∏

j=0

Onj ×
∏

{Xj : j > kn},

where Xj = X for every j > kn. If 2X is pseudocompact, then(On: n < ω) has an
accumulation point inXω.

Proof. After making some adjustment to the matrix(Onj ) of open sets in a manner simil
to what we have done in Theorem 3.1, we may require thatOnj ⊆ Vj for all n, j < ω. Let
Gn = {On0, . . . ,Onkn} for eachn < ω. Since 2X is pseudocompact,(〈Gn〉: n < ω) has an
accumulation pointF ∈ 2X . We claim thatF ∩V j �= ∅ for all j < ω. Suppose the contrar
ThenF ∩ V j0 = ∅ for somej0 < ω. It follows thatF ∈ (X � V j0)

+. Hence, we obtain a
infinite subset

I = {
n > j0: 〈Gn〉 ∩ (

X � V j0

)+ �= ∅}
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of ω. Pick anyn ∈ I and an arbitraryFn ∈ 〈Gn〉 ∩ (X � V j0)
+. Then, we have∅ �=

t

ce

er
o

n

Fn ∩ Onj0 ⊆ Vj0. But this is impossible, sinceFn ∈ (X � V j0)
+.

Next, select a pointx(j) ∈ F ∩ V j for eachj < ω, and letx = 〈x(j)〉j<ω. We show
thatx is an accumulation point of(On: n < ω) in Xω. To do this, let

W =
k∏

j=0

Wj ×
∏

{Xj : j > k}

be an arbitrary basic open neighborhood ofx in Xω, whereWj (j � k) is an open subse
in X with x(j) ∈ Wj and Xj = X for all j > k. Let W = ⋂k

j=0(Uj ∩ Wj)
−. Then

W is a τV -open neighborhood ofF . SinceF is an accumulation point of the sequen
(〈Gn〉: n < ω), we have an infinite subsetJ = {n > k: 〈Gn〉 ∩W �= ∅} of ω. For anyn ∈ J ,
we pick up an arbitraryHn ∈ 〈Gn〉 ∩ W , and decomposeHn into a finite disjoint union as
Hn = ⋃kn

j=0(Hn ∩ Onj ). Since

(Uj ∩ Wj) ∩
(⋃

{Hn ∩ Oni : i �= j, 0 � i � kn}
)

= ∅
and (Uj ∩ Wj) ∩ Hn �= ∅, then (Hn ∩ Onj ) ∩ (Uj ∩ Wj) �= ∅ for every j � k. Thus
On ∩ W �= ∅ for all n ∈ J , andx is an accumulation point of(On: n < ω). �

The proof our next theorem is similar to that of Theorem 3.1.

Theorem 3.3. LetX be a Tychonoff homogeneous space. If2X is pseudocompact, thenXα

is pseudocompact for any cardinalα.

Proof. As we have done in Theorem 3.1, to avoid triviality, we assume thatX is infinite,
and thus it has no isolated points. By [6, Corollary 2.7], all finite powers ofX are
pseudocompact. It suffices to show thatXω is pseudocompact, since an infinite pow
Xα of a Tychonoff spaceX is pseudocompact if and only ifXω is pseudocompact. To d
so, let(Gn: n < ω) be a sequence of nonempty basic open sets ofXω. For eachn < ω, we
may assume that

Gn =
kn∏
i=0

Gni ×
∏

{Xi : i > kn},

where eachkn < ω, eachGni (i � kn) is a nonempty open subset ofX and Xi = X

for every i > kn. Without loss of generality, we may require that(kn: n < ω) is strictly
increasing. (In fact, for eachn < ω, we can always add some more open setsGni with
Gni = X if necessary.) Letz(0) be an accumulation point of the sequence(Gn0: n < ω).
By the regularity ofX, we can choose two open setsV0,U0 of X such thatz(0) ∈ V0 ⊆
V 0 ⊆ U0, andU0 �= X. Then, we define

A0 = {
n < ω: f0(Gn0) ∩ V0 �= ∅}

,

wheref0 = idX . For eachn ∈ A0, let On0 = f0(Gn0) ∩ V0. Let z(1) be an accumulatio
point of the sequence(Gn1: n ∈ A0). Select anf1 ∈ Aut(X) and two open subsetsV1,U1
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of X such thatf1(z(1)) ∈ V1 ⊆ V 1 ⊆ U1, U0 ∩ U1 = ∅ andU0 ∪ U1 �= X. (In case that

ue

ositive
pectively

For
t

z(1) /∈ U0, then just takef1 = idX .) Let

A1 = {
n ∈ A0: f1(Gn1) ∩ V1 �= ∅}

.

For eachn ∈ A1, letOn1 = f1(Gn1)∩V1. SinceX has no isolated points, one can contin
this process inductively, which yields infinite sequences(z(j): j < ω), (Vj : j < ω),
(Uj : j < ω), (Aj : j < ω), (fj : j < ω) and(Onj : n ∈ Aj) (for eachj < ω) such that

(i) fj ∈ Aut(X) for all j < ω,
(ii) (Uj : j < ω) is a sequence of pairwise disjoint nonempty open sets inX with⋃

j�n Uj �= X for all n < ω,

(iii) (Vj : j < ω) is a sequence of nonempty open sets inX with V j ⊆ Uj for all j < ω,
(iv) for eachj < ω, Aj is an infinite subset ofω andAj+1 ⊆ Aj ,
(v) Aj+1 = {n ∈ Aj : fj+1(Gn(j+1)) ∩ Vj+1 �= ∅} for all j < ω,
(vi) for eachj < ω, z(j) is an accumulation point of(Gnj : n ∈ Aj),
(vii) fj (z(j)) ∈ Vj for all j < ω, and
(viii) for eachj < ω, Onj = fj (Gnj ) ∩ Vj for all n ∈ Aj .

Now, we can pick an infinite setA = {aj : j < ω} ⊆ ω such thataj ∈ Aj for everyj < ω.
For eachn < ω, let Oan ⊆ Xω be defined by

Oan =
n∏

j=0

Oanj ×
kan∏

j=n+1

fj (Ganj ) ×
∏

{Xj : j > kan},

whereXj = X for everyj > kan . Moreover, defineQan ⊆ Xω as

Qan =
kan∏
j=0

fj (Gnj ) ×
∏

{Xj : j > kan}

for eachn < ω, whereXj = X for all j > kan .
It is clear that(Uj : j < ω), (Vj : j < ω), (Oanj : n, j < ω) and (Oan : n < ω)

satisfy conditions in Lemma 3.2. By the pseudocompactness of 2X, (Oan : n < ω) has
an accumulation point inXω, sayy = 〈y(j)〉j<ω . SinceOan ⊆ Qan for all n < ω, y is also
an accumulation point of(Qan : n < ω). It follows that the pointx = 〈f −1

j (y(j))〉j<ω is an
accumulation point of(Gan : n < ω) in Xω , thus is an accumulation point of(Gn: n < ω).
Therefore,Xω is pseudocompact.�

In contrast to counterexamples in Section 2, Theorem 3.1 and Theorem 3.3 give p
answers to Question 1.1 for countable compactness and pseudocompactness res
in the class of homogeneous Tychonoff spaces in the other direction.

Remark 3.4. Recall that a spaceX is G-pseudocompact[6] if every locally finite family
of nonempty open sets is finite. EveryG-pseudocompact space is pseudocompact.
Tychonoff spaces, these two notions are equivalent. In the literature,G-pseudocompac
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spaces are also calledfeebly compact. WhenX is a Tychonoff space, 2X is pseudocompact

te
3.2,

when

t

n

for

e
if

s been

erspace
,

if and only if 2X is G-pseudocompact [6, Proposition 2.6].
Theorem 2.5 of [6] claims that ifX is regular and 2X isG-pseudocompact, then all fini

powers ofX areG-pseudocompact. By applying an argument similar to that in Lemma
one can give an alternative proof to this theorem. In fact, Theorem 3.3 is still valid
X is regular and pseudocompactness is replaced byG-pseudocompactness.

4. Additional remarks

In [6], Ginsburg also posed the following interesting question.

Question 4.1. Characterize those spacesX whose hyperspaces2X are countable compac
(pseudocompact).

In 1998, Natsheh considered Question 4.1 and claimed to provide a sufficient conditio
for 2X to be pseudocompact (seeQuestions Answers Gen. Topology16 (1998) 213–217
for details). According to Natsheh, a subsetC in a topological spaceX is called aCδ-setif
there exists a sequence(Vn: n < ω) of nonempty open sets inX such thatC = ⋂

n<ω V n.
What he claimed to prove is the following:If X is a pseudocompact normal space and
each sequence(Cn: n < ω) of Cδ-sets inX there exists anF ∈ 2X such thatF ∩ Cn �= ∅
for all n < ω andF ⊆ ⋃

n<ω Cn, then2X is pseudocompact.

Remark 4.2. There is a gap in Natsheh’s proof. In fact, he used the following fals
statement in his argument: A Tychonoff spaceX is pseudocompact if and only⋂

n<ω Gn �= ∅ for every non-increasing sequence(Gn: n < ω) of nonempty “basic” open
sets ofX. Therefore, Question 4.1 remains open.

Remark 4.3. There are no analogs to Lemma 2.7 for pseudocompactness. This ha
shown in [7, Example 4.4].

It is interesting that the countable compactness (pseudocompactness) of the hyp
2X of a spaceX with respect to a topology weaker thanτV , called the Fell topology
is completely characterized. Recall that theFell topology[4] on 2X, denoted byτF , is
generated by taking

S = {
U+: ∅ �= U ⊆ X is open,X � U is compact

} ∪ {
V −: ∅ �= V ⊆ X is open

}

as a subbase. Note thatτF is a Hausdorff topology on 2X if and only if X is locally
compact. Hou [8], and Holá and Künzi [9] showed independently that for aT1 spaceX
the hyperspace 2X is countably compact with respect toτF if and only if X is countably
compact. Moreover, Hou [8] also proved that for a locally compact spaceX, 2X is
pseudocompact with respect toτF if and only if X is either pseudocompact or notσ -
compact.
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